
24 

Acta Cryst. (1970). B26, 24 

Determination of the Cyelieity of Polytypes 

BY S.MARDIX, I.T.STEINBERGER AND Z.H.KALMAN, 

Department of  Physics, The Hebrew University, Jerusalem, Israel 

(Received 7 January 1969) 

The difference between the number of cyclic displacements and the number of anticyclic displacements 
of neighbouring layers within one unit cell of a polytype is uniquely determined by the stacking sequence. 
The a priori knowledge of this difference greatly helps in establishing the structure of the polytype. It 
is shown that the 'cyclicity' of a polytype, a quantity closely related to this difference and defined in this 
paper, can be found in a simple way from an appropriate oscillation photograph. 

Introduct ion 

Polytypes known so far are all related to close-packed 
structures belonging to one of the eight appropriate 
space groups (Verma & Krishna, 1966) and are thus 
conveniently described in terms of hexagonal unit cells 
(which may be centred). 

The various polytypes of a given substance are 
characterized by the number, n, of layers crossing each 
unit cell (the order of the polytype) and by the stack- 
ing sequence of the layers. 

The equivalent positions rpm of an atom of type p 
within the unit cell are given by 

m 
r~m =r~0 + c~maa +flraa2+ c ,  (1) 

n 

m=0,1 ,2 ,  . .. n - l ,  c~0=fl0=0. 

al, a2, and e are the primitive translations of the hexa- 
gonal unit cell. 

The distribution of the atoms in each layer (includ- 
ing the values of the vectors r~0) as well as the inter- 

layer distance 1 --  e is characteristic for a given sub- 
n 

stance and is very nearly the same for all polytypes 
of the same substance. 

The pairs (c~ra;/~m) which determine the lateral dis- 
placement of layer number m can have the values (0; 0), 
(+½; -½) or ( -½;  +½) (which are referred to as the 
'A', 'B'  and 'C '  position respectively in the classical 
ABC notation), with the additional requirement 

(2) 
The displacement vector between any two neighbour- 
ing layers can thus have only the value 

1 1 
½(al - a2) + - -  c or ½ ( a 2 -  al)  + .... c 

/7 n 

(for 'cyclic' or 'anticyclic' displacement respectively). 
After ascertaining the order n of a certain polytype 

by standard methods from oscillation or rotation pho- 
tographs, the structure determination involves essen- 

tially the determination of the sequence of pairs C~m~m, 
i.e. the stacking sequence. 

This is usually done by comparing experimentally 
measured intensities with structure factors calculated 
for all possible stacking sequences of appropriate order 
and selecting the sequence giving the best fit. (See ref- 
erences given in Table 2). 

If all possible layer combinations leading to a poly- 
type of order n are considered, the number of resulting 
stacking sequences increases very rapidly with n and 
exceeds the capacity of computers even for moderate 
values of n. It is therefore essential to reduce the num- 
ber of possible stacking sequences by introducing sub- 
sidiary conditions, as far as possible, before calculating 
the structure factors. 

One such subsidiary condition, namely the determi- 
nation of the percentage of hexagonality from an in- 
dependent measurement (birefringence in the case of 
ZnS) has been dealt with previously (Brafman & Stein- 
berger, 1966). 

The present paper describes a simple method for ob- 
taining an additional subsidiary condition, namely the 
determination of the total number of cyclic and anti- 
cyclic displacements between neighbouring layers with- 
in the unit cell. These numbers will be denoted by I and 
J respectively with I +  J =  n (order of the polytype). 

Specifically it will be shown that the quantity C, 
which will be called the cyclicity of the polytype and 
defined by 

I - J  I - J  
C - - , (3) 

I+ J 17 

can be determined in a simple way from a rough 
estimate of reflected intensities obtained from an oscil- 
lation photograph. 

Knowledge of C reduces the number of possible 
stacking sequences by an order of magnitude. 

Outl ine  o f  the method 

In polytypes of substances containing two atoms per 
molecule, for instance ZnS, there are two non-equiva- 
lent atoms, thus p = 1 and p =2, and if rl0 is choosen 
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to be 0, then r20 = --~ e, with y very close, or equal, to 3/4. 
/7 

The structure factor Fhe.z for these substances is 
given by 

f hk . l = f(l)rphk . Z (4) 

l -n ~ l) (5) f ( l )  =fs +fzn exp \2hi 

~0~.t= ~ exp 2hi hc~m+kflm+ l . (6) 
= 0  /7 

It is easily seen that in general I~0he.zI = Iq)n'k'.rl if 
h - k  = h ' - k '  (rood 3) and l=  l' (rood n). Furthermore 
if h = k (rood 3) then ~0ne. z¢ 0 for l=  0, n, 2n . . .  only. 
From this it follows that all the available information 
regarding the stacking sequence is contained in a set of 
n values ~0h~. z with h, k constant and h - k  # 0 (rood 3), 
and / ranging over n successive values, say from 

n -n/2 to -~ - I. 

Henceforth it will for simplicity be assumed that 
the polytype is of an even order, which may be achieved 
for a polytype of odd order by doubling the height of 
its unit cell. 

The squares of the absolute values of ~o are calculated 
from equation (6). 

I~010.zl2= ~ ~. exp 2hi O~m--~m'+ l 
m = 0  m '  = 0  I1 

= n +  ~. ~ exp 2hi a m - a m ' +  ...... n- .... l 
m = m ' +  1 m ' = 0  

m n m ' l  ) . 

It should be noted that expression (7) contains only 
the coordinate differences between pairs of positions. 

1 Each a m -  am' can have only one of the values + }, a, 
or 0. Equation (7) may thus be rearranged as follows" 

[~0m.tl2=n+ ~ Xp exp i f -  + Ypexp - 
p = l  

+ Z p ]  . e x p  (2_n;p/_) + [Xpexp  ( - 2 3 -  ) 

2hi + ] ( 2 7 / )  (s) 

where p = m - m '  and Xp, Yp, Zp are the numbers of 
pairs of positions whose interpositional distances are 
P e along the c axis and + ½ (al - a2),  - ½ (a l  - a2) o r  0 
t7 

respectively perpendicular to the c axis. Such pairs are 
called cyclic, anticyclic or zero pairs respectively. 
Clearly: 

Xp+ Yp+ Z p = n - p  . 

Calculating the sum, T, of [fo~0. l] 2 o v e r  one period 
of l, 

n 1 _. _ 
2 

T= ~ I~oao.z l  2 , 
n 

1 = - -  
2 

using equation (8), and observing that, p being an in- 
teger, -¢ 0 (mod n) 

n 

2 

Y 
I = n / 2  

exp 2nipl/n = 0 , 

we obtain the result 
T = n  z . (9) 

The difference, D, between the partial sums is de- 
fined as 

n 
- 1  

---1 2 

D =  ~ I~olo.zl 2 -  ~ I~o,o.zI 2. (10) 
1 = 1  i .  = n - : / + 1  

Substituting for [qho.zl z from equation (8) we obtain 
directly, on summing over l, the result 

D= VpU+ V pUp 
where 

Vp = Xv exp(2ni/3) + Yp exp(-2ni/3)  + Zp 

Up = { -  1 - exp(2nip/n)+ exp(2rcip/2) 

+ exp[2ni. (p/n)-(p/2)]}/[1 -exp(2nip/n)] 

The asterisk indicates the complex conjugate• 
Observing that Up is zero for p even and equal to 

2i cotg np/n for p odd, we have finally: 

n - - I  

D =- ~ 2i.  ( Y p -  Xp) 
p = 1 , 3 , 5 , . .  

• [exp(2ni/3)- exp(-2ni /3)] ,  cotg rip~~7 

= 4  sin 2n --"~ ( X p -  Yp) . cotg np/n 
3 " i ,  - ! , 3 , 5 . .  

n - - I  

=2  1/3 ~ [ I ( p ) - J ( p ) ] . c o t g p / n  
p = 1 , 3 , 5 . .  

I (11) 

L 

(12) 

The numbers I(p) and J(p)  introduced in equation 
(12) are defined as 

I(p) = Xp + Yn-p ,  J(p) = Yp + Xn-p • (13) 

l (p)  is the number of cyclic pairs, within one entire 
unit cell, which are p interlayer distances apart along 
the c axis. Similarily J(p) refers to the number of anti- 
cyclic pairs. 

The numbers I(1) and J( l )  are related to the num- 
bers comprising the Zhdanov symbol. Let a certain 
polytype be characterized by its Zhdanov symbol 
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( I1Jl I2J2 . . .  IqJq)  

T h e n  
q 

~, I ~ = I ( 1 ) - I ,  
k = l  

q 

Izc + Jl~= n . 
k = l  

q 

E J k ~ J ( 1 ) = J .  
k=l 

(15) 

Hence fo r th  the Z h d a n o v  symbol  will always be wri t ten  
so tha t  l>J .  

Retu rn ing  to equa t i on  (12), it is seen tha t  the  first 
t e rm of  the  sum has the value ~an. n.  ( l - J ) ,  where 

21/3 zc 
/an - cotg  - - .  The  value of /an  ranges 1 for  n = 6 

n n 

to  1.1 for  n = cxz, i.e. it r emains  close to 1 for  all values 
of  n which  are of  interest .  

Rega rd ing  the  r ema in ing  terms of  the sum in equa-  

t i on  (12) it  is no ted  t ha t  cotg  np decrease wi th  in- 
n 

creasing n at  a rate  faster  t h a n  n/pTr. Also the dif- 
ferences I ( p ) - J ( p )  are never  more  t h a n  n (or less 
t h a n  - n )  and  are general ly  of  a l te rna t ing  sign. To  a 
first r ough  a p p r o x i m a t i o n  (which will however  be 

shown to be sufficient) we may  comple te ly  disregard 
all bu t  the first t e rm of  the sum and  write for  equa-  
t ion  (12) 

D 
- -  ~ / a n .  ( I - J ) ~ - I - J .  (16)  
?/ 

Subst i tu t ing in equa t ion  (16) for  n f rom equa t ion  (9) 
and  using C defined in equa t ion  (3) we ob ta in  

I - J  D 
C . . . . . . . .  (17) 

n T " 

E q u a t i o n  (17) has been derived in terms of  the values 
I~x0.zl z, which  can  be ob ta ined  f rom exper imenta l  in- 
tensities by ca lcula t ing  first the  squares of  the s t ructure  
factors  IF10. zI 2 and  then  using equa t ions  (4) and  (5). 
[f(l)  is i ndependen t  o f  the s tacking sequence o f  the  
polytype].  However ,  in pract ice  i t  turns  out  t ha t  owing 
to the par t i cu la r  fo rm of  equa t i on  (17) and  because  
of  the fact  t ha t  f ( l )  is symmetr ic  in 1, the  expression 
1~010. tl 2 may  be replaced simply by IF10.zl z. Similarly,  
the Lorentz ,  po la r i za t ion  and  correct ing factors  con- 
nect ing  measured  intensi t ies  R10.t wi th  the s t ructure  

Table  1. Permissible values of I -J  for possible values o f  n and the various crystal systems 

Hexagonal: I -  J =  0 (mod 3) 
Rhombohedral A: I ' - J ' =  1 (mod 3) 
Rhombohedral B: I ' - J ' = 2  (mod 3) 

n odd n even 
3 + 6m 6m 
1 + 6m 4 + 6m 
5+6m 2+6m 

m=0, 1,2 . . . .  

Tab le  2. Comparision of values of (I-J) calculated from structure factors with actual values of (I-J) 

for all hitherto identified polytypes of Z n S  

A. Non-rhombohedral polytypes with asymmetric Zhdanov symbol 

( I -  J) Refer- ( I -  J) Refer- 
Polytype ( I -  J) calc. ence* Polytype ( I -  J) calc. ence* 

14L(5 4 2 3) 0 0"12 d 24L(15 9) 6 6"03 h 
20L(8 7 2 3) 0 0"12 j 24L(9 5 6 4) 6 5"93 h 
20L(7 6 3 4) 0 0"20 j 16L(14 2) 12 12"02 g 
20L(5 3 3 4 2 3) 0 0"23 f 22L(17 5) 12 11"98 i 
24L(9 8 3 4) 0 0" 11 h 24L(16 4 2 2) 12 12" 18 h 
24L(10 7 2 5) 0 0"06 h 26L(17 3 2 4) 12 11"74 d 
24L(5 3 3 3 2 4 2 2) 0 0"22 h 22L(20 2) 18 18-22 i 
34L(7 5 3 5 5 5 2 2) 0 0"73 l 24L(21 3) 18 18-12 l 
10L(8 2) 6 6"05 d 28L(23 5) 18 18"00 j 
12L(9 3) 6 6"06 j 28L(21 3 2 2) 18 18"00 j 
20L(13 7) 6 6.15 i 44L(17 4 17 6) 24 24.60 j 
20L(6 2 2 5 2) 6 6.31 f 44L(37 7) 30 30.32 j 

B. Non-rhombohedral polytypes with symmetric Zhdanov symbol 
For all these polytypes ( I - J )  calculated from structure factors equals zero exactly. 

Refer- Refer- Refer- 
Polytype ence* Polytype ence* Polytype ence* 

2H(1 1) 12L (4 2 2 4) l 20L(7 3 3 7) i 
4H(2 2) 14H(7 7) e 20L(5 3 2 2 3 5) i 
6H(3 3) a 14L(4 3 3 4) l 24L(7 5 5 7) e 
8H(4 4) b 16H(8 8) d 24L(3 3 4 2 2 4 3 3) h 

10H(55) b 16L(5 3 3 5) g 26L(7 3 3 3 3 7) i 
10L(3 2 2 3) l 16L(3 3 2 2 3 3) g 28L(9 5 5 9) c 
12H(6 6) j 20H(10 10) j 28L(3 3 3 3 2 2 3 3 3 3) 1 
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T a b l e  2 (cont.) 

C. Rhombohedral  polytypes, category A ( I ' - J ' ) =  1 (mod 3)t 

(I '  - J ' )  Refer- (1' - J ' )  Refer- 
Polytype (I '  - J ' )  calc. ence* Polytype (I '  - J ' )  calc. ence* 

30R(7 3)3 4 3-97 i 48R (13 3)3 10 10.12 g 
36R(6 2 2 2)3 4 4-20 e 60R(9 3 6 2)3 10 10.30 j 
42R(9 5)3 4 3.89 60R(10 3 5 2)3 10 10.71 j 
48R(10 6)3 4 4"08 g 72R(17 7)3 10 10.30 1 
48R(8 4 2 2)3 4 3.91 g 72R(7 3 5 2 5 2)3 10 10.70 l 
60R(12 8)3 4 4"08 i 78R(13 5 5 3)3 10 10-19 i 
60R(5 3 2 2 5 3)3 4 4-65 f 60R(18 2)3 16 16.33 f 
60R(6 3 3 3 3 2)3 4 4"03 j 78R(17 3 4 213 16 16.19 i 
60R(5 45 2 2 2)3 4 5"39 j 114R(21 9 6 2)3 16 16.25 j 
60R(8 4 2 2 2 2)3 4 3.78 j i 14R(13 5 2 2 6 2 6 2)3 16 16.34 j 
84R(7 3 3 3 3 3 3 3)3 4 3"00 l 84R(25 3)3 22 22.23 j 
42R(12 2)3 10 10.23 j 102R(31 3)3 28 28.25 / 

D. Rhombohedral  polytypes, category B ( l ' - J ' ) = 2  (rood 3)t 

(I '  - J ' )  Refer- (I '  - J ' )  Refer- 
Polytype (I '  - J ' )  caic. ence* Polytypc (I '  - J ' )  calc. ence* 

18R(4 2)3 2 2"28 e 72R(11 6 2 5)3 2 1"83 h 
24R(5 3)3 2 2-35 d 72R(7 3 3 5 3 3)3 2 1"28 / 
30R(6 4)3 2 2"05 l 72R(8 6 3 2 2 3)3 2 2"14 / 
30R(4 2 2 2)3 2 2"57 l 78R(7 7 3 3 4 2)3 2 2"75 i 
36R(7 5)3 2 1"78 k 84R(11 8 4 5)3 2 1"97 J" 
36R(4 2 3 3)3 2 2.98 k 36R(10 2)3 8 8"36 l 
36R(5 3 2 2)3 2 2"39 k 48R(12 4)3 8 8"14 f 
48R(9 7)3 2 2"19 f 60R(9 4 5 2)3 8 8"72 j 
48R(6 4 3 3)3 2 2"13 l 60R(II 43  2)3 8 8"65 f 
48R(7 4 2 3)3 2 1"63 f 66R(15 7)3 8 8"26 i 
48R(4 2 2 2 3 3)3 2 3"53 f 72R(I 1 5 5 3)~ 8 8"40 / 
54R(10 8)3 2 2"12 j 72R(14 5 2 3)3 8 7"78 / 
60R(I 1 9)3 2 2.14 i 78R(9 3 3 3 5 3)3 8 9"35 j 
60R(9 6 2 3)3 2 2"0~, k 60R(17 3)3 14 14"34 j 
60R(8 7 3 2)3 2 2-63 k 72R(17 3 2 2)3 14 14"49 / 
60R(7 4 2 3 2 2)3 2 1"00 i 96R(17 5 6 4)3 14 14"24 / 
66R(7 7 5 3)3 2 2"25 i 120R(13 3 3 5 11 5)3 14 13"82 l 
66R(8 7 4 3)3 2 !'55 i 72R(22 2)3 20 20"39 1 
66R(5 5 4 2 3 3)3 2 2"82 i 114R(29 9)3 20 20"22 ] 
66R(7 3 2 4 3 3)3 2 1"18 c 120R(29 3 2 2 2 2)3 26 26"80 / 
72R(9 6 4 5)3 2 1"82 h 114R(35 3)3 32 32.25 j 
72R(9 7 4 4)3 2 2"25 l 

* References are to publications of identification of the polytype. (a) Frondel, C. & Palache, C. (1950). Amer. Min. 35, 29. 
(b) Evans, H. T. & McKnight, E. T. (1959). Amer. Min. 44, 1210. (c) Daniels, B. K. (1966). Phil. Mag. 14, 487. (d) Brafman, O., 
Alexander, E. & Steinberger, I. T. (1967). Acta Cryst. 22, 347. (e) Mardix, S., Brafman, O. & Steinberger, I .T.  (1967). Acta 
Cryst. 22, 805. (f)  Mardix, S., Alexander, E., Brafman, O. & Steinberger, 1. T. (1967). Acta Cryst. 22, 808. (g) Mardix, S. & 
Brafman, O. (1967). Acta Cryst. 2 , 501. (h) Mardix, S. & Brafman, O. (1968). Acta Cryst. A24, 258. (i) Kiflawi, I. & Mardix, S. 
(1969). Acta Cryst. In the press. (j) Kiflawi, 1., Mardix, S. & Steinberger, I. T. (1969). Acta Cryst. In the press. (k) Mardix, S., 
Kiflawi, I. & Kalman, Z. H. (1969). Acta Cryst. In the press. (/) Mardix, S. (1969). To be published. 

t Owing to the fact that all vapour-grown ZnS polytypes are ofeven periodicity, the values of I ' - J '  increase in steps of 6. 

fac tors  are  s y m m e t r i c  in l a n d  c h a n g e  on ly  s l ight ly  for  
t he  n re f lex ion  u n d e r  c o n s i d e r a t i o n .  W e  m a y  wr i te  
f inal ly for  t he  cycl ic i ty  de f ined  in e q u a t i o n  (3)" 

where  

I - J  D' 
C . . . . . . . . . .  n T '  (18) 

( ,o.OO = _ (R~o.t)~ , 

- -  . 4 -  I 
2 ' 

n 
- -  I 

2 

T ' =  ~ (RI0.0 ~ • 
n 

l - -  - -  
2 

R10. l is t he  m e a s u r e d  re f lec ted  in tens i ty .  T h e  e x p o n e n t  
b has  t he  va lue  1 for  re f lex ions  f r o m  m o s a i c  crys ta ls  
(R p r o p o r t i o n a l  to  IF[ 2) a n d  t he  va lue  2 fo r  re f lex ions  
f r o m  per fec t  crys ta ls*  (R p r o p o r t i o n a l  to  IFI). I n t e n -  
sit ies can  be d e t e r m i n e d  for  e x a m p l e  f r o m  an  osci l la-  
t i o n  p h o t o g r a p h  o f  t he  10 .  l row.  I t  has  been  f o u n d  
prac t ica l  to  use for  in tens i ty  sca l ing  t he  re f lex ions  ob-  
t a i n e d  f r o m  an  osc i l l a t ion  p h o t o g r a p h  o f  a k n o w n  
po ly type .  

T h e  s a m e  a r g u m e n t s  h o l d  for  any  r o w  o f  re f lex ions  
h k .  l w i t h  h - k ¢ - 0  ( m o d  3) a n d  t h u s  any  such  r o w  
m a y  be used  to  d e t e r m i n e  C by m e a n s  o f  e q u a t i o n  (18). 

* In many of the vapour grown ZnS samples the polytype 
regions are in fact perfect crystals. 
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Rhombohedral polytypes 

Frequently polytypes are found which can be indexed 
on a rhombohedral unit cell. Obviously in this case the 
number of layers per hexagonal unit cell must be an 
integral multiple of 3. The Zhdanov symbol of such a 
polytype is composed of three equal groups of num- 
bers, each group being referred to as an 'elementary 
Zhdanov sequence': 

(I1JllzJ2 . . .  IeJeI1JllzJ2 . . .  IeJelIJllzJ2 . . .  IeJe),  
e = n / 3  , 

which is usually abbreviated to the form 

( I I J l I 2 J 2  . . .  [eJe)3  . (19) 

Clearly 

2 I ~ -  2 J~ ¢ 0 (rood 3). (20) 
k=l k=l 

Rhombohedral polytypes fall into two categories, 
depending on whether the value of the difference (20) 
equals 1 (mod 3) or 2 (rood 3) - category A or B 
respectively. This stipulation defines uniquely the cat- 
egory of any given polytype, as, by convention [see 
remark following equation (15)], the numbers Ie and Je 
are chosen so that I >  J. 

Oscillation photographs of rhombohedral polytypes 
show characteristic absences, reflexions being permitted 
along the 10. l row if l = 2  (mod 3) for category A 
and if l = 1 (rood 3) for category B. [The same extinction 
rules hold for any row h k .  l with h - k  = 1 (mod 3)]. 
This particular classification is a consequence of the 
convention I >  J. 

The category of a rhombohedral polytype can be 
determined from an oscillation photograph of e.g. the 
10. l row: the sum of the intensities of the reflexions 
of each of the two half-periods above and below the 
equator are always unequal (for rhombohedral poly- 
types), see equation (18), and from the definition of 
D' in equation (18) it is seen that the 'stronger' half- 
period must be assigned the negative /-indices (as 
I - J > 0 ) .  

Having determined the signs of the indices on the 
oscillation photograph, it is now easily found whether 
reflexions of indices = + 2, + 5, etc. or those of indices 
= - 2, - 5, etc. are present, and thus whether the crys- 
tal belongs to category A or B respectively. 

For determining I and J of a rhombohedral type the 
general procedure outlined before does hold. Ob- 
viously in these cases both I and J must be whole 
multiples of 3. 

It is conceivable that, in some rhombohedral poly- 
types of high periodicity and lowest cyclicity, it may 
not be possible to determine experimentally which of 
the two half-periods in an oscillation photograph is the 
stronger. In such cases (which have not been en- 
countered yet in practice) it may not be possible to 
categorize the polytype. Still, even in such a case there 
will be only two possible values for I ' - J ' ,  instead of 
the one obtained for the straightforward cases (see 

Conclusion) and thus even here the work required for 
a complete structure determination will be considerably 
reduced. 

Conclusion 

The foregoing considerations show that from a c axis 
oscillation photograph containing at least one well 
resolved row of reflexions, the cyclicity C can be ob- 
tained using equation (18). (In addition to the other 
information obtained from an oscillation photograph.) 
It should be noted that the intensities required for this 
calculation do not require high accuracy, owing to the 
fact that certain restrictions are imposed on the pos- 
sible values of I - J .  It is readily confirmed, by count- 
ing the various possibilities, that the permissible values 
for I - J  for different values of n and the three possible 
categories are as shown in Table 1. 

In order to simplify the presentation, results for 
rhombohedral polytypes here and in Table 2 are given 
in terms of the numbers I '  and J '  of cyclic and anti- 
cyclic displacements per elementary Zhdanov sequence. 
They are related to I and J by the relations I '  =1/3.  
J '  =,1/3. 

This means that in calculating I and J from inten- 
sities a fairly large margin of error can be tolerated 
without affecting the final result. As both n and the 
value of 1 - J  (rood 3) are obtained independently and 
accurately, the value of I - J  must have one of the 
values shown in Table 1 (for any crystal the smallest 
possible difference I - J  value is 6). Thus after calculat- 
ing, by means of equation (18), the approximate value 
of l - J ,  its correct value is found by choosing that 
integer both closest to the calculated (approximate) 
value and consistent with the limitations of Table 1. 

In order to illustrate the applicability of the method 
the values of I -  J for all identified ZnS polytypes were 
compared with the values l - J =  C .  n from equation 
(18), using calculated structure factors instead of in- 
tensities. The results are tabulated in Table 2. 
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